High mutual cooperation rates in rats learning reciprocal altruism: The role of payoff matrix, por Guillermo E. Delmas, Sergio E. Lew e B. Silvano Zanutto:
In this work, we trained rats in iPD against an opponent playing a Tit for Tat strategy, using a payoff matrix with positive and negative reinforcements, that is food and timeout respectively. We showed for the first time, that experimental rats were able to learn reciprocal altruism with a high average cooperation rate, where the most probable state was mutual cooperation (85%). Although when subjects defected, the most probable behavior was to go back to mutual cooperation. When we modified the matrix by increasing temptation rewards (T) or by increasing cooperation rewards (R), the cooperation rate decreased. In conclusion, we observe that an iPD matrix with large positive reward improves less cooperation than one with small rewards, shown that satisfying the relationship among iPD reinforcement was not enough to achieve high mutual cooperation behavior. Therefore, using positive and negative reinforcements and an appropriate contrast between rewards, rats have cognitive capacity to learn reciprocal altruism.
No comments:
Post a Comment