Joint Outputs, por Nick Rowe:
There's something a bit weird about the way we normally do economics. Or maybe it's just the examples we normally use. My mind isn't quite clear on it yet. So I'm writing this blog post.Uma variante extrema que me ocorre desta situação em que uma firma pode produzir dois produtos é quando a "matéria-prima" para o produção A é simultaneamente um incómodo para a produção B; nessa situação, não só não haverá rivalidade entre as duas produções, como o aumento da produção de A contribui para o aumento da produção de B. Um exemplo pode ser a apanha de caracóis - alguêm apanhar os caracóis que há numa horta provavelmente contribuirá para que a horta produza mais couves. Ou levar o gado a pastar num campo após as colheitas - provavelmente fará com que seja mais fácil fazer a plantação seguinte, sem tanto matagal. E, sobretudo, suspeito que os casos em que existe uma tradição social de os proprietários de um terreno deixarem não-proprietários usá-lo, em certos épocas, para as suas atividades (como acontecia classicamente com a apanha de caracóis), tendem a ser sobretudo nestes casos, em que o Joaquim utilizar o terreno para produzir A aumenta a capacidade de depois a Lúcia produzir B a partir desse terreno.
We usually talk about multiple inputs producing one output. Labour, land, and capital are inputs used to produce apples. Three inputs, and one output. We know that's a simplification. It's lots more than just three. There are lots of different types of labour, natural resources, and capital goods, and all combine together to produce one output good. Then we go on to talk about the degree of substitutibility between different inputs in the production function. At one extreme we have perfect substitutibility, so Y=AXa + BXb + CXc; and at the other extreme we have the fixed proportions, so Y = min{AXa , BXb , CXc}. In between we have imperfect substitutibility like Y=Xa^a.Xb^b.Xc^c.
Why isn't it the other way around? Why not one input producing multiple outputs?
Or at least, n inputs producing m outputs, where m could either be bigger or smaller than n?
Is it because that's just how the world usually is?
If you look at the whole economy, it is not at all obvious whether there are more inputs than outputs. It depends how you count them. Even if you look at a particular firm it's not always obvious. A farm produces (say) wheat, barley, and beans. But the barley could go for brewing if the weather is good and it is managed well, or for cattle feed if it isn't. And there are lots of different grades of brewing barley, all with different prices, depending on a long list of things.
We could talk about the degree of substitutibility between the different outputs in the production process. At one extreme the different outputs are perfect substitutes in production, so AYa + BYb + CYc = X; and at the other extreme we could have fixed proportions between the different outputs, so max{AYa , BYb , CYc} = X.
We even have a name for the production functions with fixed proportions of inputs; we call it the "Leontieff production function". Why don't we have a name for the production function with fixed proportions of outputs? (Or if we do have a name, how come I've never heard of it?).
No comments:
Post a Comment